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ABSTRACT
Distributed multi-sensor fusion has been widely used in military and civilian applications.
In the statistical sensor fusion domain, the design of an optimal fusion processor usually
requires the joint statistics of the local sensor outputs. When accurate joint statistical
knowledge is not readily available, popular solutions are either to estimate the joint
statistics from training data or to simply assume independence of the data. Although it is
well known that a fusion solution constructed using empirical data or simplified
assumptions often cannot reach the optimal performance, little research has been focused
on analyzing the performance difference. This paper presents a systematic analysis of
distributed sensor fusion performance in an uncertain operating environment using a
Bayesian likelihood ratio fusion model. For the problem where joint statistics of the local
sensor outputs cannot be obtained accurately, the sub-optimal fusion processor is
assumed to have an estimated correlation coefficient and its performance difference from
the optimal scenario is derived analytically using a Gaussian model. We use the
detectability index, which fully characterizes the receiver operating characteristic (ROC)
curve for the Gaussian model, as the performance metric to compare the optimal and sub-
optimal cases. The ratio of detectability indices for the sub-optimal and optimal cases is
derived as a function of the true correlation coefficient, the estimated value, and the
performance difference between individual local sensors. We prove that the closer the
individual local sensor performances, the less vulnerable the fusion performance is to a
mismatched estimation of the correlation coefficient. Furthermore, we show that for the
special case where all local sensors have the same performance, the optimal fusion
performance is always achieved regardless of the estimation deviation from the true
correlation coefficient. We provide discussions on the deeper physical meaning of such
phenomena.  For non-Gaussian sensor noise models, we extend our analysis via computer
simulation and provide experimental validations using application specific sensor data of
military relevance  (e.g., multispectral, hyperspectral). Our results show that similar
conclusions hold for a family of heavy-tailed non-Gaussian distribution models.
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1.0 Introduction
Sensor fusion, the study of optimal information processing in distributed multi-sensor environments
through intelligent integration of multi-sensor data, has gained popularity in recent years due to the
increasing demand for more accurate information, more practical and robust procedures to manage data
efficiently, and improved system reliability and performance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Data fusion
systems are now used extensively for both military and civilian applications such as automated target
recognition, remote sensing, battle-field surveillance, automated threat recognition systems,
manufacturing processes monitoring, robotics and medical applications. Numerous algorithms have been
developed and have achieved significant improvement in signal detection performance compared with
that of a single sensor.

In the statistical sensor fusion domain, the design of an optimal fusion processor usually requires the joint
statistics of the local sensor outputs. When accurate joint statistical knowledge is not readily available,
popular solutions are either to estimate the joint statistics from training data or to simply assume
independence of the local sensor outputs. Although it is known that a fusion solution constructed using
empirical data or simplified assumptions often cannot reach the optimal performance, little research has
been focused on analyzing the performance difference. Some published literatures evaluated sensor fusion
performance under an uncertain environment where the fusion processor did not have joint statistics. But
these literatures mostly used application data or benchmark data sets [11, 12, 13]. There is published
research comparing the performance of different algorithms including the naive Bayes, decision trees, and
support vector machine (SVM), using several different performance metrics such as accuracy and area
under the receiver operating characteristic (ROC) [14]. However, these work lack theoretical analysis that
can provide insight into the reasons for the differences in performance of the various algorithms.

In this paper, we present a systematic analysis of distributed sensor fusion performance in an uncertain
operating environment, using a Bayesian likelihood ratio fusion model. When the joint statistics of the
local sensor outputs cannot be obtained accurately, we define the sub-optimal fusion processor as the one
that  has an estimated correlation coefficient.  The naive Bayesian model  is  a  special  case of  this  type of
processor assuming zero correlation coefficient. We use the detectability index, which fully characterizes
the receiver  operating characteristic  (ROC) curve for  the Gaussian model,  as  the performance metric  to
compare the optimal and sub-optimal cases. We derive the performance difference between the sub-
optimal and optimal scenarios analytically using a Gaussian model. The difference is defined as the ratio
of detectability indices for the sub-optimal and optimal cases and is derived as a function of the true
correlation coefficient, the estimated value, and the performance difference between individual local
sensors. We also extend our analysis via computer simulation to non-Gaussian sensor noise models and
provide experimental validations using application specific sensor data of  military relevance  (e.g.,
multispectral, hyperspectral).

2.0 Preliminaries
The problem we study here is a binary hypothesis testing problem assuming N local sensors, Zi, i = 1, 2,
..., N. Each sensor receives observation data and uses its own detection algorithm to generate local
likelihood values. These local outputs ri’s are sent to a fusion processor for better detection performance.
The Bayesian optimal fusion processor uses all the local outputs to form the likelihood ratio:
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The fusion processor can reach the optimal fusion performance only if the joint statistics between the
local outputs under each hypothesis is known. For analysis purpose, we define three types of fusion
processor: One is the Optimal Fusion Processor which has the full knowledge of the joint statistics of the
local data. The second is the Mismatched Correlation Fusion Processor, which uses estimated correlation
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coefficients (mismatched from the true values) to implement the fusion process. The third one, the
Independent Fusion Processor is a special case of the Mismatched Correlation Fusion processor, which
always assumes the local data is independent. The input data vector to the fusion processor is defined as:
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We also assume that the covariance matrices under the two hypotheses are equal, i.e.,
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3.0 Gaussian Model
We first assume that the local likelihood values are jointly normal. The joint probability density function
of the Gaussian vector r under each hypothesis Hi , is:
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By definition, the output of the optimal Bayesian log-likelihood ratio fusion processor is:
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where 1A

3.1. Performance Analysis
The optimal Bayesian fusion processor requires the joint statistics of the local sensor data. In many
applications where the correlation information is not available, an estimation of the correlation coefficient
is used for the implementation of the fusion processor, which we have defined as the Mismatch
Correlation Fusion Processor. Next we will analyze the performance difference between the Optimal
Fusion Processor and Mismatch Correlation Fusion Processor for the Gaussian model.

3.1.1 Two local sensors
We start our analysis with two local sensor case, i.e., N = 2. In this case, the output of the Optimal Fusion
Processor is:
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And the output from the Mismatch Correlation Fusion Processor is:
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where ' is the estimated correlation coefficient. For the special case that the local sensors are assumed to
be independent, the output from the fusion processor (Independent Fusion Processor) is:

21 rr (10)
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Since the local outputs ri's are jointly normal, the linear combination of these variables is marginally
normal. Thus ,  and  are all normally distributed. We use the ROC curves of the fusion processors to
evaluate and compare the fusion performances. Since the output of the fusion processors are normally
distributed, their ROCs are completely characterized by a single parameter - detectability index [15]. In
the following discussions, we will use this parameter as the performance evaluation index. It has been
proved in [16] that the detectability index of the Optimal Fusion Processors is:

2
2121

1
2 dddd
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Where d1 and d2 are the detectability indices of the local sensors. The detectability index of the
Independent Fusion Processor is:
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The ratio of performance between the Independent Fusion Processor and Optimal Fusion Processor is:
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where a is the ratio of performance between the two local sensors, a = d1/d2. Without loss of generalities,
we assume a 1.

1) When the two local sensors have the same performance, i.e., d1 = d2, Dind=Dopt.  In  this  case,  the
Independent  Fusion  Processor  has  the  same  performance  as  that  of  the  Optimal  Fusion  Processor,
even though it neglects the correlation information between the local outputs. This is an interesting
result that we will discuss in more details later.

2) For the case that the two local sensors have different performance, i.e., d1 d2, the performance ratio
varies as a and  change.  Sine Dopt is a monotonically decreasing function of  when  [0, 1], we

proved that the range of  is [0,  ] = [0, ]. It has also been proved in [16]  that Dind/Dopt reaches

its global minimal value when a = 3 and  = , and in this case :
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Figure 1 shows how Dind/Dopt changes as a function of two variables, a and . When a, the local
performance ratio, is fixed (for each individual curve in Figure 1), the fusion performance ratio
Dind/Dopt decreases as  increases. This is because the deviation of the estimated correlation
coefficient ' = 0 from the true coefficient  increases.  When  is fixed, the closer the performance
between two local sensors, i.e., the smaller the parameter a is, the closer the performance between the
Independent Fusion Processor and the Optimal Fusion Processor. When the two local sensors have
exactly the same performance, the Independent Fusion Processor can reach the optimal fusion
performance.
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Figure 1

The Independent Fusion Processor is a special case of the Mismatched Correlation Fusion Processor.
Next, we will look at the performance difference between the Optimal Fusion Processor and the general
Mismatched Correlation Fusion Processor. For the latter, its fusion detectability index is:
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where  is  the  true  correlation  coefficient  and ' is the estimated value that is used to implement the
Mismatched Correlation Fusion Processor.

1) For the case that the two local sensors have the same performance, i.e., d1 = d2,

1
2dDD optmismatch (16)

Dmismatch is still independent of the estimated correlation coefficient, and it reaches the same
performance as that of the Optimal Fusion Processor.

2) For the case that the two local sensors have different performance, i.e., d1 d2,
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where a is stilled defined as the ratio of performance between the two local sensors, a = d1/d2. The
fusion performance ratio Dmismatch/Dopt is a function of a,   and '.  Figure  2.  -  Figure  4  show three
examples of Dmismatch/Dopt.  In Figure 2, a = 1.5, the true correlation coefficient is  = 0.2, 0.4, 0.6. The
estimated correlation coefficient can be in [0, 0.82] (The maximal correlation coefficient that can be

is  = ). This example illustrates that when the two local sensors have very close performance,

the sub-optimal fusion performance is always very close to the optimal case, regardless how accurate
the estimated correlation coefficient is. In Figure 3, the local performance difference increases to a =
2.0 and the fusion performance degradation also increases. But the maximal degradation for the
independent assumption is always very small as proved earlier in Equation (14), which demonstrates
the robustness of the Independent Fusion Processor.
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Figure 2. Change of Dmismatch/Dopt  as a function of local sensor performance difference a, the
true correlation coefficient  and the estimated value ' - Example 1.

.
Figure 3. Change of Dmismatch/Dopt  as a function of local sensor performance difference a, the
true correlation coefficient  and the estimated value ' - Example 2.

Figure 4 Change of Dmismatch/Dopt  as a function of local sensor performance difference a, the
true correlation coefficient  and the estimated value ' - Example 3.

3.1.2 N local sensors
We  have  shown  that,  for  two  local  sensors  with  the  same  performance,  the  Mismatched  Correlation
Fusion Processor can reach the optimal performance. The same analysis can be extended to N (N  3)
local sensor case. Here we assume the output from each sensor is ri, which is normally distributed under
each hypothesis H1 and H0. The local outputs are jointly normal, and the correlation coefficient between
any two output ri and rj (i j) is . It is proved in [16] that the Mismatched Correlation Fusion Processor
(including the Independent Fusion Processor) has the same fusion performance as that of the optimal one,
if all local detectors have the same performance, i.e., d1 = d2 = . . . = dN.

"The same performance" between the optimal and sub-optimal fusion processor refers to the fact that they
have the same ROC curve. In the case of Gaussian model, the ROC curve is fully characterized by  the
detectability index. As for how to reach a specific point on the ROC curve, these two processors require
different threshold settings on the fusion output.

3.2. Physical Interpretation
We have proved, using Gaussian model, that the Mismatched Correlation Fusion Processor can reach the
same  performance  as  that  of  the  Optimal  Fusion  Processor  when  the  local  sensors  have  the  same
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performance. In this section, we will look deeper into the data fusion concept to give a physical
interpretation of this result. When the local sensor outputs are statistically independent, the covariance
matrix is:
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And by Equation (7), the output of the Optimal Fusion Processor and its performance is:
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The physical meaning of the above results is that when the local sensor outputs are independent, the
output of the Optimal Fusion Processor is simply the sum of the local outputs and the fusion performance
is the sum of the local performance. Data fusion is the fusion of the independent information portion of
the local data sources. For the correlated case where the local sensor outputs are not independent,
intuitively, the output of the optimal fusion processor is no longer simply the sum of the local outputs and
the fusion performance cannot reach the sum of the local performance.

To explain the data fusion in the correlated case, we will use the following results from [15]: If the
random variables ri’s are correlated, there always exists a coordinate system in which the random
variables are uncorrelated, and the new system is related to the old system by a linear transformation, i.e.,
there always exists a new set of coordinate axes, 1, 2, . . . , N,

ijj
T

i (21)

such that:
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Figure 5.  Rotation of the coordinate system. r1 and r2 are the coordinates of the original
coordinate system, and r1

' and r2
' are the coordinates of the new coordinate system.
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In Figure 5., we show the two different coordinate systems. The importance of the new coordinate system
is that in this system, the new set of mapped random variables are independent of each other, which
means they carry independent information, so that the fusion performance is the sum of the performances
of this set of  mapped variables. The output of the fusion processor using the new coordinate system is:
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where:

)(' 01 mmT
iim (25)

Next we will use the above results to explain why when the local detectors have the same performance,
the Mismatched Correlation Fusion Processor can reach the optimal fusion performance. Since:

(26)

We can see that i’s are actually the normalized eigenvectors of the covariance matrix . In general, the
element values of eigenvectors are functions of the local detectability indices di’s and the correlation
coefficient , which means the fusion performance is decided by the local sensor performance and their
correlation. For the two sensors case, when the local sensors have the same performance, i.e., d1 = d2 = d,
the covariance matrix is:

dd
dd

(27)

The eigenvalues and eigenvectors are:
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When the local performances are equal, the rotation of the axes of the is independent of the true
correlation coefficient. The Mismatched Correlation Fusion Processor in our earlier discussion processes
data in this new rotated coordinate system, and thus can reaches the optimal fusion performance.

For the more general  case,  when there are  N local  detectors,  if  all  of  them have the same performance,
i.e., d1 = d2 = . . . = dN = d, the covariance matrix is:

ddd

ddd
ddd

(30)

It has two distinct eigenvalues, 1 = d[(N-1) +1] and 2 = d(1- ), where 1 is of multiplicity N-1. The
eigenvectors, which correspond to the eigenvalue 1 and 2 are:
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So for N local detectors case, when the local performances are equal, the rotation of the coordinate system
is also independent of the true correlation coefficient . This explains why the Mismatched Correlation
Fusion Processor, although using a mismatched correlation coefficient value for data processing, can still
reach the optimal fusion performance.

4.0 Non-Gaussian Models
Beyond the analysis using Gaussian model, we also extended our analysis to the non-Gaussian noise
models via computer data simulation. We simulated the sensor output as random variables with varied
correlation, and then used Bayesian likelihood ratio test as the fusion scheme to compare the fusion
performance between the Optimal Fusion Processor and Mismatched Correlation Fusion Processor.

A more general statistical distribution we studied is Gamma distribution, which is a two-parameter family
of continuous probability distributions with a shape parameter k and a scale parameter . Figure 6 shows
some examples of Gamma distributions with different shape and scale parameters.

Figure 6.  Probability density functions of Gamma distribution with different shape
and scale parameters.

We simulated the Gamma distributed random variable Xi's, with certain shape parameter k's, scale
parameters 's, and correlation coefficient . We define the inputs to the fusion processor under
hypotheses H1 and H0 are:
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We implemented two fusion processors using Bayesian likelihood ratio test, one is the Optimal Fusion
Processor which we can obtain the joint probability function information of the local outputs using the
simulated data, the other is the Independent Fusion Processor which assumes the local outputs are
independent.  The output from the two fusion processors are:
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The fusion ROC curves are generated to compare the fusion performance difference.

Example 1: Three local sensors (N = 3), each local output has the same Gamma distribution, with k = 3
and  =2 and the same signal to noise ratio. The correlation of the data under each hypothesis is =0.4.
Figure 7 (a) shows the simulated Gamma distributed noise data. Figure 7 (b) is the distribution of local
outputs under each hypothesis. Figure 7 (c) shows the ROC curves of the individual sensors and the two
fusion processors. It proves that when the local sensors have the same performance, the Independent
Fusion Processor reaches the optimal fusion processor regardless the non-zero correlation between the
data.

(a)                                                                                  (b)

(c)

Figure 7.  Performance comparison between Optimal Fusion Processor and Independent
Fusion Processor. All local outputs have the same Gamma distribution with k = 3 and  =2,
and the same signal to noise ratio. The correlation of the data under each hypothesis is  =
0.4. (a) The simulated Gamma distributed noise data.  (b) The distribution of local outputs
under each hypothesis. (c) The ROC curves of the individual sensors and the two fusion
processors.
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Example 2: Three local sensors (N = 3), each local output is Gamma distributed, with k = 3 and  =2, but
different signal to noise ratios, thus different local ROC curves. The correlation of the data under each
hypothesis is =0.4. Figure 8 (a) shows the simulated Gamma distributed noise data. Figure 8 (b) - (d) are
the distributions of local outputs under each hypothesis. Since the signal to noise ratio is different, the
local sensors have different detectability indices. Figure 8 (e) shows the ROC curves of the individual
sensors and the two fusion processors. It demonstrates that even when the local sensors have different
performances, the Independent Fusion Processor still reaches close-to-optimal fusion performance.

 (a)                                                                                  (b)

(c)                                                                                 (d)

(e)
Figure 8. Three local sensors (N = 3), each local output is Gamma distributed, with k = 3 and

 =2, but different signal to noise ratios, thus different local ROC curves. The correlation of
the data under each hypothesis is =0.4. (a) The simulated Gamma distributed noise data.
(b) - (d) : The distributions of local outputs under each hypothesis. (c) The ROC curves of
the individual sensors and the two fusion processors.

Example 3: Three local sensors (N = 3), each local output has different distributions. For local sensor #1,
it is Gamma distributed with k = 3 and  =2.  Local  sensor  #2  has  t-distribution.  Local  sensor  #3  is
normally distributed. The correlation of the data under each hypothesis is =0.5. Figure 9 (a) shows the
simulated local noise data. Figure 9 (b) - (d) are the distributions of local outputs under each hypothesis.
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Figure 9 (e) shows the ROC curves of the individual sensors and the two fusion processors. It shows that
even when the local sensors have different distributions, the Independent Fusion Processor still has the
robustness in fusing the local sensors.

                                                    (a)                                                                             (b)

                                                     (c)                                                                             (d)

Figure 9. Three local sensors (N = 3), each local output has different distributions. Local
sensor #1: Gamma distribution with k = 3 and  =2.  Local sensor #2: t-distribution. Local
sensor #3: Normal distribution. The correlation of the data under each hypothesis is =0.5.
(a) The simulated local noise data. (b) - (d) : The distributions of local outputs under each
hypothesis. (c) The ROC curves of the individual sensors and the two fusion processors.

5.0 Experimental data analysis
Since both analytical and simulation results show robustness of the Independent Fusion Processor, we
extended our fusion experiments to the data sets collected by the hyperspectral Airborne Signals
Intelligence Payload (ASIP) sensor. The ASIP data we analyzed consisted of three passes taken over the
same area at different altitudes: low, medium, and high. Our analysis mainly focused on the low altitude
data cube which consisted of 130 contiguous spectral bands covering both the VNIR and SWIR regions
(400 – 2500 nm). The image size is 334-by-184 pixels per spectral band with a ground resolution of
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approximately 0.5 meters. There are five target classes to be detected: metal roof, tarmac, concrete, white
plane  and  blue  plane.  The  sample  training  pixels  for  each  class  is  marked  as  magenta  color  shown  in
Figure 10.

Figure 10.  Example frame of one band of hyperspecral data from ASIP sensor. The five
classes of interest are: #1: metal roof; #2: tarmac; #3: concrete; #4: white plane; #5: blue
plane.

ASIP hyperspectral data was processed through several different classification algorithms to determine
the similarity between target and non-target spectra samples. Each classification algorithm was trained
with the same spectral library. For each class, the spectral signatures of the sample pixels were averaged
to obtain a single representative class signature. These signatures were then used as the spectral library in
conjunction with the classification algorithms to match the selected class spectral signatures with similar
pixels  within  the  image.  There  are  two  main  algorithms  for  detecting  each  class:  the  first  is  to  use  the
features in the spectral domain and then the support vector machine (SVM) as the classification method.
The other is to utilize the features in the bispectrum domain and then use different similarity metrics (e.g.,
Zero-mean normalized cross-correlation, Hausdorff distance, Modified Hausdorff distance) to measure
the similarity to the library class signature. Confidence values derived from the classification process
along with corresponding ROC curves were then used in our fusion experiments. Given the number of
training data available, it is difficult to obtain any meaningful joint probability density function of the
local confidence outputs. So, we use Independent Fusion processor to fuse the results from individual
detection algorithms for better detection performance. The following two examples show results for two
classes, white plane and tarmac.

Example 1: This is an example of detecting white plane class. Algorithms 1 is using Modified Hausdorff
distance metrics on bispectral features, and algorithm 2 is using SVM on spectral features. Figure 11 (a)
and (b) are the local confidence values of the two algorithms. Figure 11 (c) and (d) show the distribution
of local outputs under each hypothesis. Figure 11 (e) and (f) are the joint probability density function of
the local outputs assuming we could have all ground truth data for training. Since we have a very small
amount of training data, it is not feasible to estimate this joint statistics. The joint statistics are used here
only to evaluate the fusion performance of the Optimal Fusion Processor. Figure 11 (g) shows the ROC
curves of the individual algorithms and the two fusion processors. We can see that although the joint
statistics of the local data is not available, the Independent Fusion Processor still achieved much better
detection performance than any of the local algorithms.

Example 2: This is an example of detecting tarmac class. Algorithms 1 is using Hausdorff distance
metrics on bispectral features, and algorithm 2 is using modified Hausdorff distance metrics on the same
features. Figure 12 (a) and (b) are the local confidence values of the two algorithms. Figure 12 (c) and (d)
show the distribution of local outputs under each hypothesis. Figure 12 (e) and (f) are the joint probability
density function of the local outputs assuming we could have all data for training. Figure 12 (g) shows the
ROC curves of the individual algorithms and the two fusion processors. The tarmac class is more difficult
to detect compared with the other classes. So, the performance of the local algorithms are not very good.
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But, the Independent Fusion Processor achieved much better detection performance than any local
algorithm even though the joint statistics were not readily available.

                                                            (a)                                                              (b)

                                                        (c)                                                                     (d)

(e)                                                                     (f)

  (g)
Figure 11.  Example of detecting white plane class. Algorithms 1 is using modified Hausdorff
distance metrics on bispectral features, and algorithm 2 is using SVM on spectral features.
(a) and (b): The local confidence values of the two algorithms. (c) and (d): The distribution
of local outputs under each hypothesis. (e) and (f): The joint probability density function of
the local outputs under H0 and H1. (g): The ROC curves of the individual algorithms and the
two fusion processors.
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                                                        (a)                                                                     (b)

                                                        (c)                                                                     (d)

(e)                                                                     (f)

(g)
Figure 12. Example of detecting tarmac class. Algorithms 1 is using Hausdorff distance
metrics on bispectral features, and algorithm 2 is using modified Hausdorff distance metrics
on the same features.  (a) and (b): The local confidence values of the two algorithms. (c) and
(d): The distribution of local outputs under each hypothesis. (e) and (f): The joint probability
density function of the local outputs under H0 and H1. (g): The ROC curves of the individual
algorithms and the two fusion processors.
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6.0 Conclusions
We have conducted a systematic analysis on the distributed sensor fusion performance between the
Optimal Fusion Processor and the Mismatch Correlation Fusion Processor which estimates the correlation
information of the sensor outputs, using a Bayesian likelihood ratio fusion model. The performance
difference is derived analytically for Gaussian distributed data as a function of the true correlation
coefficient, the estimated value, and the performance difference between individual local sensors. We
proved that when all the local sensors have the same performance, the sub-optimal fusion processor can
always reach the optimal fusion performance. A deeper analysis on the physical meaning of such
phenomena is also given.

Independent Fusion Processor, which assumes the independence of the local data, is a special case of the
Mismatch Correlation Fusion Processor. It can always achieve close-to-optimal fusion performance given
the simplicity of implementation. We extended our analysis to non-Gaussian distributed data via
computer simulation and provided experimental validations using application specific sensor data. Our
results showed that similar conclusions hold for a family of heavy-tailed non-Gaussian distribution
models.

In real-world fusion applications, we are often faced with incomplete knowledge and uncertainty
regarding the data and sensors. Bayesian interpretation of Occam's razor principle dictates that it is best to
use the least complex assumptions when explaining local sensor data. For example, one approach in the
choice of fusion schemes is to use fewer degrees-of-freedom to avoid over-fitting the limited available
data. Our analytical results provide a theoretical foundation and practical guideline on the trade-off
between performance and robustness in the design of a fusion processor.
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